Extensions 1→N→G→Q→1 with N=C22 and Q=C52⋊C4

Direct product G=N×Q with N=C22 and Q=C52⋊C4
dρLabelID
C22×C52⋊C440C2^2xC5^2:C4400,217

Semidirect products G=N:Q with N=C22 and Q=C52⋊C4
extensionφ:Q→Aut NdρLabelID
C22⋊(C52⋊C4) = C1024C4φ: C52⋊C4/C5⋊D5C2 ⊆ Aut C22204+C2^2:(C5^2:C4)400,162

Non-split extensions G=N.Q with N=C22 and Q=C52⋊C4
extensionφ:Q→Aut NdρLabelID
C22.(C52⋊C4) = C5214M4(2)φ: C52⋊C4/C5⋊D5C2 ⊆ Aut C22404-C2^2.(C5^2:C4)400,161
C22.2(C52⋊C4) = C2×C525C8central extension (φ=1)80C2^2.2(C5^2:C4)400,160

׿
×
𝔽